Package: breakfast 2.5

breakfast: Methods for Fast Multiple Change-Point/Break-Point Detection and Estimation

A developing software suite for multiple change-point and change-point-type feature detection/estimation (data segmentation) in data sequences.

Authors:Andreas Anastasiou [aut], Yining Chen [aut, cre], Haeran Cho [aut], Piotr Fryzlewicz [aut]

breakfast_2.5.tar.gz
breakfast_2.5.zip(r-4.5)breakfast_2.5.zip(r-4.4)breakfast_2.5.zip(r-4.3)
breakfast_2.5.tgz(r-4.4-x86_64)breakfast_2.5.tgz(r-4.4-arm64)breakfast_2.5.tgz(r-4.3-x86_64)breakfast_2.5.tgz(r-4.3-arm64)
breakfast_2.5.tar.gz(r-4.5-noble)breakfast_2.5.tar.gz(r-4.4-noble)
breakfast_2.5.tgz(r-4.4-emscripten)breakfast_2.5.tgz(r-4.3-emscripten)
breakfast.pdf |breakfast.html
breakfast/json (API)

# Install 'breakfast' in R:
install.packages('breakfast', repos = c('https://ychen101.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • c++– GNU Standard C++ Library v3

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.82 score 1 stars 33 scripts 472 downloads 1 mentions 17 exports 30 dependencies

Last updated 2 months agofrom:9b56d0d75d. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 23 2024
R-4.5-win-x86_64OKNov 23 2024
R-4.5-linux-x86_64OKNov 23 2024
R-4.4-win-x86_64OKNov 23 2024
R-4.4-mac-x86_64OKNov 23 2024
R-4.4-mac-aarch64OKNov 23 2024
R-4.3-win-x86_64OKNov 23 2024
R-4.3-mac-x86_64OKNov 23 2024
R-4.3-mac-aarch64OKNov 23 2024

Exports:breakfastmodel.fixednummodel.gsamodel.icmodel.lpmodel.sdllmodel.threshplot.breakfast.cptsprint.breakfast.cptsprint.cptmodelsol.idetectsol.idetect_seqsol.notsol.tguhsol.wbssol.wbs2sol.wcm

Dependencies:clicolorspacefansifarverggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigplyrR6RColorBrewerRcpprlangscalestibbleutf8vctrsviridisLitewithr

Vignette for R Breakfast Package

Rendered frombreakfast-vignette.Rmdusingknitr::rmarkdownon Nov 23 2024.

Last update: 2024-04-27
Started: 2020-11-23

Readme and manuals

Help Manual

Help pageTopics
Breakfast: Methods for Fast Multiple Change-point Detection and Estimationbreakfast-package
Methods for fast detection of multiple change-pointsbreakfast
Estimate the location of change-points when the number of them is fixedmodel.fixednum
Estimating change-points in the piecewise-constant mean of a noisy data sequence with auto-regressive noise via gappy Schwarz algorithmmodel.gsa
Estimating change-points or change-point-type features in the mean of a noisy data sequence via the strengthened Schwarz information criterionmodel.ic
Estimating change-points in the piecewise-constant mean of a noisy data sequence via the localised pruningmodel.lp
Estimating change-points in the piecewise-constant or piecewise-linear mean of a noisy data sequence via the Steepest Drop to Low Levels methodmodel.sdll
Estimating change-points in the piecewise-constant or piecewise-linear mean of a noisy data sequence via thresholdingmodel.thresh
Change-points estimated by the "breakfast" routineplot.breakfast.cpts
Change-points estimated by the "breakfast" routineprint.breakfast.cpts
Change-points estimated by solution path generation + model selection methodsprint.cptmodel
Solution path generation via the Isolate-Detect methodsol.idetect
Solution path generation using the sequential approach of the Isolate-Detect methodsol.idetect_seq
Solution path generation via the Narrowest-Over-Threshold methodsol.not
Solution path generation via the Tail-Greedy Unbalanced Haar methodsol.tguh
Solution path generation via the Wild Binary Segmentation methodsol.wbs
Solution path generation via the Wild Binary Segmentation 2 methodsol.wbs2
Solution path generation via the Wild Contrast Maximisation methodsol.wcm