Package: Sshaped 1.1

Sshaped: Nonparametric, Tuning-Free Estimation of S-Shaped Functions

Estimation of an S-shaped function and its corresponding inflection point via a least squares approach. A sequential mixed primal-dual based algorithm is implemented for the fast computation. Details can be found in Feng et al. (2022) <doi:10.1111/rssb.12481>.

Authors:Oliver Y. Feng [aut], Yining Chen [aut, cre], Qiyang Han [aut], Raymond J. Carroll [aut], Richard J. Samworth [aut]

Sshaped_1.1.tar.gz
Sshaped_1.1.zip(r-4.5)Sshaped_1.1.zip(r-4.4)Sshaped_1.1.zip(r-4.3)
Sshaped_1.1.tgz(r-4.4-x86_64)Sshaped_1.1.tgz(r-4.4-arm64)Sshaped_1.1.tgz(r-4.3-x86_64)Sshaped_1.1.tgz(r-4.3-arm64)
Sshaped_1.1.tar.gz(r-4.5-noble)Sshaped_1.1.tar.gz(r-4.4-noble)
Sshaped_1.1.tgz(r-4.4-emscripten)Sshaped_1.1.tgz(r-4.3-emscripten)
Sshaped.pdf |Sshaped.html
Sshaped/json (API)

# Install 'Sshaped' in R:
install.packages('Sshaped', repos = c('https://ychen101.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 205 downloads 4 exports 2 dependencies

Last updated 2 years agofrom:058709b930. Checks:OK: 1 NOTE: 8. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 10 2024
R-4.5-win-x86_64NOTENov 10 2024
R-4.5-linux-x86_64NOTENov 10 2024
R-4.4-win-x86_64NOTENov 10 2024
R-4.4-mac-x86_64NOTENov 10 2024
R-4.4-mac-aarch64NOTENov 10 2024
R-4.3-win-x86_64NOTENov 10 2024
R-4.3-mac-x86_64NOTENov 10 2024
R-4.3-mac-aarch64NOTENov 10 2024

Exports:cvxregplot.sshapedpredict.sshapedsshapedreg

Dependencies:RcppRcppArmadillo